The First Chern Form on Moduli of Parabolic Bundles

نویسندگان

  • LEON A. TAKHTAJAN
  • PETER G. ZOGRAF
چکیده

For moduli space of stable parabolic bundles on a compact Riemann surface, we derive an explicit formula for the curvature of its canonical line bundle with respect to Quillen’s metric and interprete it as a local index theorem for the family of ∂̄-operators in the associated parabolic endomorphism bundles. The formula consists of two terms: one standard (proportional to the canonical Kähler form on the moduli space), and one nonstandard, called a cuspidal defect, that is defined by means of special values of the Eisenstein-Maass series. The cuspidal defect is explicitly expressed through the curvature forms of certain natural line bundles on the moduli space related to the parabolic structure. We also compare our result with Witten’s volume computation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

2 6 Se p 20 06 THE FIRST CHERN FORM ON MODULI OF PARABOLIC BUNDLES

For moduli space of stable parabolic bundles on a compact Riemann surface, we derive an explicit formula for the curvature of its canonical line bundle with respect to Quillen’s metric and interpret it as a local index theorem for the family of ∂̄-operators in associated parabolic endomorphism bundles. The formula consists of two terms: one standard (proportional to the canonical Kähler form on ...

متن کامل

Some Index Formulæ on the Moduli Space of Stable Parabolic Vector Bundles

We study natural families of ∂-operators on the moduli space of stable parabolic vector bundles. Applying a families index theorem for hyperbolic cusp operators from our previous work, we find formulæ for the Chern characters of the associated index bundles. The contributions from the cusps are explicitly expressed in terms of the Chern characters of natural vector bundles related to the parabo...

متن کامل

Symplectic Structures on Moduli Spaces of Parabolic Higgs Bundles and Hilbert Scheme

Parabolic triples of the form (E∗, θ, σ) are considered, where (E∗, θ) is a parabolic Higgs bundle on a given compact Riemann surface X with parabolic structure on a fixed divisor S, and σ is a nonzero section of the underlying vector bundle. Sending such a triple to the Higgs bundle (E∗, θ) a map from the moduli space of stable parabolic triples to the moduli space of stable parabolic Higgs bu...

متن کامل

Quantization of a Moduli Space of Parabolic Higgs Bundles

Let MH be a moduli space of stable parabolic Higgs bundles of rank two over a Riemann surface X . It is a smooth variety over C equipped with a holomorphic symplectic form. Fix a projective structure P on X . Using P , we construct a quantization of a certain Zariski open dense subset of the symplectic variety MH .

متن کامل

Moduli Spaces of Parabolic Higgs Bundles and Parabolic K(d) Pairs over Smooth Curves: I

This paper concerns the moduli spaces of rank two parabolic Higgs bundles and parabolic K(D) pairs over a smooth curve. Precisely which parabolic bundles occur in stable K(D) pairs and stable Higgs bundles is determined. Using Morse theory, the moduli space of parabolic Higgs bundles is shown to be a noncompact, connected, simply connected manifold, and a computation of its Poincaré polynomial ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006